R

AN

N

X

\\

RN

- N

~

N

)

¢

SR

- N\J
]
.

. Wy

THECRETICAL INVESTIGATION OF THE EFFECT OF VARIATION
CF' ATMOSPHERIC DENSITY WITH TIME ON THE
STAERILITY OF AN HYPOTHETICAL

ATRCRAFT HAVING A SINGLE

1516777
DEGREE OF FREEDOM % o
PSRN

N \Pl
S APRI971 T
o RFCEIVED  RY
\— BaSh STI FACILIY  Oof
&
O, INT Bhake S
mi. \
4

Ao d o
JSL NSRS & “’/

A
Presented to
the Faculty of the Department of Engineering

University of Virginla

In Partial Fulfillment
of the Requirements for the Degree

Master of Aeronautlical Engineering

Wr
~J
Charles H, Zimmerman

June 1955

N71-72200

§ (ACCESSION NUMBER) (W

z /Y/f ane.
§ (PASES) {CODE)

> A

§ (NASA CR OR TMX\O'R AD NUMBER) (CATEGORY)

4




w;

APPROVAL SHEET

This thesls 1s submitted in partial fulfillment of
the requirements for the degree of

Master of Aeronautical Engineering

(Boarlis W forrerresimnne

Author 7 /

Approved:

(/aﬂ’t% J‘ R W R S

Faculty Advisor

Vool w8, Dk L

"For Subcommittee

Chairman, Committee on Graduate Studies

in Englneering



&

TABLE OF CONTENTS

CHAPTER . ' PAGE

Io INTRODUCTION . & v 4 v 4 v o o o o o o o « o o o 1

II. DEVELOPMENT OF THE DIFFERENTIAL EQUATION , . . . L
III., ANALYSIS AND SOLUTION OF THE DIFFERENTIAL

EQUATION o & o o o o o o o o o o o o o o o o o 8

IV. DISCUSSION + + o o o + o o o s o o o o o o o oo, 28

v 'Y SUM MARY [] L[] [ L] L[] [ ] L] [ ] L] . L] L[] [ ] [ ] L] [ ] [ [ ] [ ] L ] 32

REFERENCES « « o « o« o o o o o o o o o o« o o o« o o « o 34
APPENDIXI.--oooooooouoooooocooo 36




- LIST OF FIGURES

l. Variatlon of Angular Displacement With Time for
a Slngle-Degree-of-Freedom System With Zero
‘Aerodynamic Damping in an Atmosphere the

Density of Whlch Is Increasing Exponentially

‘Nith Time [} L] L] [} . . L] L] . L] . [} [] . . . . [] [} 15

L



-t

o Hy

o2
e/

x

Ci, Co.

LIST OF SYMBOLS

constant in expression p = pSLe'ahO‘bAh
constant 1n expression p = pSLe'ahO'bAh
constant 1in expression p = pSLe'ahO*ct

base of natural logarithms

unknown function of time

unknown function of time

helght above sea level at time t = 0, feet

height above h_, feet

0°?

deslgnatlon of general term in hypergeometric
series

reference length on alrcraft, feet

time, seconds

constant proportional to aerodynamic demping

A= VZSL 3V PSLe (Cmg)

constant proportional to aerodynamic spring rate

stlpSLe (;Cmg)

constants of integration



vi
C serodynamic moment coefficient
C =
o %pvzsz

partial derivative of serodynamic moment

coefflicient with respect to 8

3c,
C =
mg ~ 86

partial derivative of aerodynamic moment

coefficient with respect to (%%
\(.V/

3C
Cov = mmn

(8

F(JL, 1, g,) hypergeometric series
Be I
Fn<§§, 1, g]> modified hypergeometric serles

I moment of inertia of alrcraft about axis of
rotation, slugs ft

I modified Bessel function of first kind of
order zero

In Bessel function of order n

o modlfied Bessel functlon of second kind of
order zero

avhitrworny ~ranatontsa
QA W Ve ey wwadm v Tae v =

K. ¥, . . €+
1?2 =22 * A




vii

gaerodynamic moment about axls of rotation

partial derivative of aerodynamic moment with
respect to 6

partlal derivative of aerodjnamic moment with
respect to é

reference area

flight velocity, feet per second

vertical component of flight velocity, feet
per second

dependent variable such that m(y) = o(t)

dependent variable such that nl(gl) = n(¢)

angular dilsplacement from reference attitude

value of 6 when t =0

constant in expression 6 = ke Mt

independent variable ¢ = et

Independent varisble ¢ 1 = - é»&

air density, slugs per cubic foot

air density at sea level

frequency parameter




|
|
|

CHAPTER T
INTRODUWCT ION

An alrcraft or missile traveling along an inclined
flight path 1s subjected to a variation of air density with
time. The forces and moments exerted by the air on the body
envelope and on any supporting, stabllizing, or control
surface are proportional to the alr denslty. Any deviation
of the alreraft from the attitude corresponding to equilib-~
rium in steady rectilinear flight is a time-dependent

motion. It is apparent that i1f there 1s a substantlal rate

‘of change of air density with time, thils rate of change must

be taken into account in calculeting the alrcraft motlon.
It 1s of particular interest to determine whether the
variation of density with time will adversely affect the
stability of the alrcraft,

This problem is becoming increasingly important with
the increase in alrcraft and mlssile speeds, Missiles and
aircraft of the future may reach orbital or near orbltal
speeds In flight at altitudes where the atmospherlic pressure
is practically zero. Among the many problems which must be
solved before such flight is practicable is that of 1nsuring
that the vehicle will be stable and controllable while

ud reentering the atmosphere and hence being sub-

jected to large rates of chan mosphsric density. It
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1s, therefore, essential to be able to evaluate the effect
upon stability of rate of change of air density with time.
That the effect of varistion of density with time can

not be neglected in estimating performance has been known
for many years (reference 1). In 1542, Scheubel

(reference 2) showed that the density variation with helight
may appreclably affect dynamic stability in "level" flight,
.., flight involving small deviations from a level mean

L " v~ \ Al e ~ry e o+
4 ] v
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general problem of the effect upon dynamlc stabllity of

the density varlation with tine in an Inclined flight path
will "require an entirely new mathematical treatment, more
difficult than anything in the familiar theory of stability."
The essential difference in the mathematical treatment
arises from the fact that the inclusion of terms describing
the effect of varlation of density with time results in
linear differential equations with varisble coefficients,
whereas the classical mathematical treatment based on the
egssumption of small deviations from a mean flight gives
linear differential equations with constant coefficients.

The solution of a set of simultaneous differential equations
with varisble coefficlents such as 1s required to describe
motion wlth more than one degree of freedom appears to
prosent gréeatl mathesmatlical difficuity and, so far as is

known, has not been accomplished..



In the present investigation, an attempt will be
made to gain some Insight as to the general effect of rate
of change in density with time by making & theoretical study
of a simple single-degree-of-freedom system. It will be
assumed that this system is subjected to an exponentisal
varlation of density with time. The resulting linear
differential equation with variable coefficients for the

motion following a disturbance will be set up and solved,

-3

3 o] 3 X haY
he motion will ve discussed considering b

F..J

and descending flight. The implications of the single-
degree~-of -freedom solution relative to the general case of
free flight with six degrees of freedom will be considered.

The material to be presented will be arranged as
follows:

(1) Development of the Differential Equation

(2) Analysis and Solution of the Differential

Equation

(3) Discussion

(L) Summary
(5) Appendix I - Hypergeometric Solution for the

Differential Equation



CHAPTER II
DEVELOPMENT OF THE DIFFERENTIAL EQUATION

The equation of equilibrium of inertia and aero-
dynamic moments for an aircraft having a single degree of

freedom can be written
I0 = Mao + Mg® (1)

where © 1s the angular deviatlion from the trim attitude.

In writing this equation, it 1s assumed that the aerodynamic
moments Mé and M° are linesasr with respect to é and o,
respectively, for the magnitudes to be encountered, that they
are mutually independent, and that they are algebralcally
additive.

The partial derivative of the serodynamic moment due

to angular displacement Mg can be written as

1 v2sic

Me = 2’}-1\! me

where S 1s a reference area, 1l 1s a reference length,
dc
M
and C = dimensi 1l coefficlient dependent
Mg Ty i1s a nondimensional ¢ n penden

on the aserodynamic configuration.
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Similarly, the partial derivative of the aerodynamic moment

due to angular velocity M3 can be written as

- 1 V2 l
M""" lCo—-
é T 3PV SIChs 5%
where
oC
- m
Cm = .

serodynamic configuration. Substltuting the expanded
expressions for Mg and Mé in equation (1) glves
n 1l .2 [ I 1l .2 PR
I8 = =pV3IC_,. == & + =pV 31C_ & {2
2" my 2V 2" mg !

For the purposes of this paper, 1t will be assumed
that V 1is a constant and that p 1s a function of time,
It will be further assumed that the vehlcle in question 1s
traveling at near orbltal speed on an incllned flight path,
and that the change in height above the earth's surface 1s
linear with time (the effect of the earth's curvature is
neglected, or can be considered to be compensated by a
corresponding curvature of the flight path in space). From
Figure 3 of reference L, it will be seen that the variation
of atmospheric density with height can be approximated by

ha malad?l e
waiv TV ad@uva UL



loglcp =

in the interval between

Thus we can write

- _ (9.00 - 2.62)n
2.62 ,00,000 (3)

sea level and h = [;00,000 feet,

- aho ‘b Ah
Ps1®

Since it hes been assumed that A4h varies linearly with

time

where a = 3,67 x 10~9

plus sign corresponding

(L)
and ¢ = 3.67 x 1077 Vyt with the

to descending flight and the minus

sign to ascending flight. Substituting in (2)

I8 + -PSLV2$Z< e8hog ety o

e/

1 -ahg_tct, _
szLVZSL<-CmQ>e e e =0

Letting

‘aho/

1 1

and

I

_ %VszLSto-ah°<-Cmg>

I



gives the differential equation

ct t

6 + Ae °%3 + et = o (5)

representing the motion following a dilsturbance of a single-
degree-of-freedom system in an atmospheric density varying
exponentlally with time, The values of A &nd B

obviously must be calculated using

corresponding to the altitude at which t = 0.



CHAPTER III

ANALYSIS
- AND

SOLUTICN OF THE DIFFERENTIAL EQUATION
The general solution of the equation
6 + ae?tt§ + Betlg = o

wom A A ar TV il a b 3 s e a
SCC APPCIIULA 4} WILLCIL QU<Sos UV

is
afford a simple or readily understandable expression for the
variation of © with time. Since the purpose of this paper
1s to elucidate the motion, it appears desirsble to present
and study solutlions which result from certaln simplifying
assumptions, The first assumption willl be that ¢ — 0.

Considering (1), when ¢ = 0 gives

O + A6 +B0 =0 (6)
A solution 1s readilly obtalned by assumling the variation of
6 with time to e given by

6 = Ke Mt

Substituting in (6) and solving for A gilves

_ A [|a%
AN==-35%2\3 -B



or
G B 7 S (O
or
( > ' |
b [(1,\ (8)-2)e | KEO(-J(.Z&)Z-B}J (7)
Ifr
(é-z < B
- 4 5 N
e = e K3 cos (\IB- % >+Kh sin <\jB-<%/>i,(7a)
I -
(87 -+
o= %t[xs + Ket] (7o)
If |
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6= K-{e(- *\Jp;-zj)t + KB"(- 3 - (é)a‘ >t (7e)

These solutions are well known and the steps have
been repeated here only for completeness.

The case of gresastest practical interest is that
described by equation (7a) when A 1is very small,

corresponding to poor serodynamic damping. When the damping

1:

n
N
x4}
]
Q

the smpl

v

[

tude of the oae

[

llsat

[

on remains constant

and hence the energy In the osclllatory mode is constant

and can be éxpressed as
E = 386 2 ” (8)

where 8, 1ls the amplitude and BI 1s the serodynamic
spring rate,

1 -ah
_ 5Y%81(~Ong)psre ™"
B = I

L)

Since B decreases exponentially with altitude

ct

(for constant V ) it 1s apparent that if there is no

asrodynamlc damping the amplitude of the oscillation must
lncrease exponentially with altitude unless there is some
energy transfer because of the change in density with time
durlng the motlon. In order to detiermine wheiher such an

Interchange exists, 1t is necessary to consider the case

T T - T e



when ¢ # o. It will be convenient to let A = 0, thus
removing the energy drain due to dampling.
Equation (5) with A = 0 has a closed analytic

solution obtained as follows:

Let
e(t) = n(t)
where
= etcl

then

6 = n'%% = gn'cetCl

= zcn't
0 = c212n" + o2y
Substituting in (5)
cagan" + clgmt Acgan'+ Bgn = 0O

or

en" + (1ed)nt v Bm=o
c

11

(9)
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Letting A = 0 glves

"+t v S m=o (10)
c

Equation (10) can also be written as

for which a solution is (reference 5, pp. 255-260)

6 = C1Jd, \[—- 2 t) + CZYOQ\JQZ *°f) (11)

N WE &~

where the plus slgzn corresponds to descent and the minus
sign to ascent.

Figure 1 i1llustrates the motion described by
equation (11) for descending flight., The particular casse
used as an example corresponds to t = 0 at an altitude

of ;00,000 feet. The other assumptions are

<3
]

20,000 ft/sec

|
I

g =200 1b/sq ft



% = 2000 reference lengths per second

¢ = 0,05 (corresponding to a rate of descent, V, = 1360
feet per second)

It was assumed that at ¢t = 0

With these assumed values and initial conditions
o = 1.215J0<o.716 6+0.025t) 0.377YO(O.716 eto-025t>
Now
Jo(x) = \J-% cos (x - E)

and

n

Yo (x)

Equation (11) can be replaced by
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+C
1B -2
v e
\ "W
+St
B "2 1
C, sin ( ¥ e - K)] (12)

for practical purposes except near t = 0 where the

9¢)

T RS
esael's function must

o

& retained for accurucy.

From equation (12) it 1s apparent that the maximum

c
- rt
amplitude in descending flight is proportlonal to e L .

The variation of energy with time is, therefore

I 5t
- ct, 2
E ——2—Be 0~ = Ke

1ndicating a growth of energy with time due to the increase

of density 1n descending flight. Similarly in ascending
flight

and the energy in the oscillation decreases with tlime, even

c
t
though the amplitude ilncreases in proportlion to eII .

ok e
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No useable exact solution was found for equation (5).
A practical solution was found, however, as follows:
Equation (12) gives a close approximation to the
exact value for 6 glven by (11) except very near t = O,
When thls expression for 6 1s inserted in g + Becto = 0

it is found that, since

c e
2 !_é=e-atl'cl cos (\é'-gezt ..E.),.
‘%i‘g \ /

dH—'

2
A\
v

L %t v
Co sin ﬁz e - n
c
~Letting Sy
2 i
g, = &2 e -
- ({2 )
. c
J = N

rt
Jg e [—Cl sin 0; + C, cos og
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and
[N ] ’ c
P
0 = _Q_ e Etcl[cos ﬁ + C2 sin o]] -
2 16
\& \ulfs
it
¢
LLZ sin + Co cos 01] +
(B8 oo
Q.
c — +C ~ 1
B e+ I—Cl sin 01 + C2 cos olj +
lf,ft
B8 8 % for cos 01 - G5 sin o]
c
then
- c c C
c2 ")It %l_t %—
1z © - Be + Be [01 cos ¢ + Cp sin °1:|

c c

't t
_E.JEeE +i—JBeH E—Clsinal"'czcosol]z
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c
. 2 -rt
This can be exactly true only 1if ;_é e L = 0. Since ¢

-t
1s small and e L decreases rapidly from 1 as ¢t

increases, 1t 1s apparent why (12) can closely approximate

- &t
(11), especially at large values of t. The term E__ L
l

Cc
: t 2 -
i1s small relative to Bezi*_ and (S_ ¢ - Be
16

C

t
agvmntotes -Be &+ asg t hecomes larce
ymp Be &g T Decomes large.

lo
STV
i
=
1]
'.J
,___'_\_’l.'

Cq cos (g -E) + C, sin (g - Eﬂ

g ‘g [‘Cl sin 9, + C, cos °2]

it b=




and

g g

—

4-||o
=2

¢y cos 6, + Cp sin O%J +

One finds that

Eg 2(8')2‘%3 gg" =%de Ht

which can be neglected, as was previously shown.

Also

19

- - P!
i 2(8')2-%5 2"-8 Z(g")2]

[ty
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In order to find sn expression for @ to fit equation (5},

it seems ressonable that
—\T?=f(t)[gl(t)] l}:l cos (gl —E)+Ca sin (gl-ﬁ-il
o _

where f(t) 1is an added damping term and gj(t) 1s a new
function differing from g(t) only slightly because of the
influence of the damping on the period. Under these

conditions, it is also reasonable to assume that

ﬁ 51- g‘(51')2 - % g1g81"

—

and

3 1
! g(51')2 r ey Cey”

are small and can be neglected. It will be shown later that

this assumption 18 Justified. Differentlistin and

—
(o]
ct
ct
[
o]
4.2
Zle
2

l @
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gives
- 3
= f1
\Fa_ g [Cl cos 05 + C, sin 03] +
z .
81 gl [:Cl cos 03 02 sin 03] +

81 sl' [—Cl sin 03 + 02 cos 03]

1
2 =g 2 +
\]’5 81 1 cos 03 02 sin 03] +

[, -2

B 7
2r1d- £
fi 5 8 gl' Cl cos o3+02 sip 05_‘ + |

1
g, 281' E—Cl sin 03 + C, cos 03:'} +
3 % 2 1 -3 -3
Mige (BN -5 ea e -a “(s')°]

C., coso_ +C sinc]+
L_l z 2 2

IS TUTEURE FRp
-ze (8) mze (a7 e gl'il x

-

-Cl sln 03 + 02 cos 0'5_]
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Neglecting the terms previously shown to be small,
and substituting in the original complete differential
equation

_d | . 1

1
g 2 - f'g g,' - fg Zlg. 1) 2 + aeSt(r1g ~ 2
1 1 & 1 (8 €1

ke

1
1l - ctp, é}
> &1 g,) + Be fgl J Cllcos 03 + C2 sin 05 +

1

1

S L

1
ef'gy zé]' + Aectfsl 314 [:C, sin o, + C, cos o:] =
T

———

In order that the equation be satisfled, 1t is

necessary that the coefficients of

E)l cos 03 + C2 sin 63]

and

[}Cl sin 03 + 02 cos oé]

each be equal to zero., Therefore

2 oCt

L f'glgl' - f(gl') + A ct 1

ct
f' - Ae E fglgl' + Be f

and

2f' + pecty = o

0

0

Lk




From the latter relation

f' _ _ A _ct
T--3°
log £ = - A et 4 const
2c
or |
- Aget

f = Const e <2C

or, allowing the constant to be absorbed in
_ A _ct '
f =e <°C
A
A e - :_ect
ft = _ = e%%g <cC
2
A ct
fn = . A oty 2c + (ﬁ)aeCte
2 2
One can then write
A _ct
- 2 act 2 - c
- %—A- QCte (o] + (-éA-) ecte 2c + = ecte

23

A __ct
2c
- —.gCt
2¢ 3181' -

o ik il 5



or

() - oo - gy ? - Lot

+ BeC®t = ¢
2

2
Now in general [KA) L.

> > 13 negligible relative
to B and one can write

L

()2 = [ i g(Aé‘t) j,ct

or

Letting

Integrating by parts gives
N

6
2 (18) (2)

A g2 A 2 A 2
gl=<¢h+-23-(_°_?___. .14'__2_3.__ ice

ol




In the sample problem, the value cf t at which

- 400,000 _
is ¢ )-'}—lgz-o—

the aircraft has reached the ground

29 seconds. Also

B=3.2 x 107l

- -6 _
A=2x10 (Cm' =

o

¢ = 0.05
é =), x 10~
KB - 5512
cd

2

=t
(é -4 ) = 0.0067

1

5}, = l|:o.512 - 0.015@2

il Lol ik

25

-10)

Inserting the above values in the expression for g1

g = [0.512 - o.cnaﬂ’ir +

11-%(0.0151;)2
2

[0.512 - o.onb,il 2

It is apparent that

%(o.ouu)

E).512 - o.onlﬂé

S-t

. e T o . .>e
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can be used without important loss of accuracy. This
confirms the assumption that

-2 g
2 2 1 -
£ & (81') ~58 8"
and
- 3 - 3
2
"8y (51') te g
can be neglected since it was shown earlier that when g, =

these quantities are negligible, For most cases of practi-

cal interest

: c
- 2c° 2 B 3t "
® = e —T—= ¢, |Cj cos <\F:! e< = > -
B >zt c I
St
C, 8in (J% 0l - E) (13)

will sufficiently accurately represent the motion., It will

—

be seen that this differs from equation (11) only by the

addition of the damping term

A
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Although equation (13) is most generally applicable
and represents the normal situation of low serodynamic
damping and a moderate aerodynamic spring constant, it 1s
of Interest to conslider a speclal case representing a high
ratio of damping to spring constant as might exist for an
aircraft with very low "static" stability. The speclal

case represented by

ﬁc- e°‘> + CAKOG% e°t>j|l (1)

For positive values of B the term in Ko 1s obviously a

rapid convergence, The function I0 dlverges rapldly

but it can readily be shown that the function

A ct
-2

— A
© = e ¢ CSIO<ZE e°t§ also converges, although slowly.

MLJJJ

il




CHAPTER IV

DISCUSSION

The general disturbed motion of an hypothetlcal
8ingle-degree-of -freedom aircraft entering the earth's
atmosphere at constant speed can be approximated by

equation (13)

A-Ct Co T ] c
-l [TE 3% o
e = e “

or\ﬁn

o

q“\“l_%flcos & e -E)+
ca sn ({5 o2 - 1)

where A and B depend on the alr density at t =0

-

while C, and C, are constants of integration fixed by
the cheracteristics of the moticon at t = 0,

Tha motion described by equatlon (13) differs from
Figure 1 only by a more rapld decresse of amplitude with
time. It differs from the osclllatory motlon described by
equation (7a), corresponding to a single-degree-of-freedom
aircraft at constant altitude, in that both the aerodynamlec
damping and the frequency in descending motlion Increase
exponentially with time. Alsoc the motion decays exponen-

tlally with time even when the aserodynamic damping is zero.

This latter effect arises from the fellure of the increase

28

i
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in density with time to feed energy into the oscillatory
motion fast enough to support a constant amplitude. The

energy 1In the oscillation can be expressed as
* 2
E = 21-[:Be°t(9)2 + (9)“]

Since © = 0 at times of maximum 6 the energy would ve

required to increase as et to maintain a constant ampli-

c
tude decreases as e

»
4]
3
E»
i
()
«t
oy
(2]
Ihy]
=
o]
fuer)
=%

»
»
»
¢

%t

[¢]

hence the energy increases only &as

Because of the exponential variation of the aero-
dynamic damping with time, the total damping at high alti-
tude 1s almost entirely due to the rate of Increase of
density. 0Cn the other hand, the aerodynamic dampling may
become very powerful at low altitude, as was the case for
the 1llustrative example.

Equation (13) applies equally well for ascending

flight when c¢ 1s replaced by (-c). It can be written

Cc

Lo (Ee e g)

s

i .“Lﬂ
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It will be seen that when A 1s small, or t 1is
large, the motlon corresponds to an unstable oscillation of
increasing period. Hence an hypotheticsal single-degree-of-
freedom alrcraft leaving the atmosphere at constant speed
willl tend to perform lncreasing oscillatlions when it reaches
high altitudes end will obviously take on a tumbling motion,
1f not otherwlse stabilized, as it lesves the atmosphere.

The special case represented by equation (1) indi-
cates the e y
an unusually low serodynamic spring constant or a very large
rate of vertical descent. The motion under such condition
degenerates into a palr of convergences: one very rapld,
corresponding to the tendency for é to be damped quickly
to & low value after a disturbance; the other very slow,
corréspondlng to a slow return of 6 toward zero after a
disturbance,

The preceding anslysis and discussion apply only to
a single-degree-of-freedom system. As is well known (for |
éxXxamplie, see the dlscussion in reference 7) the motion of a
multiple~degree-of -freedom system may be undamped although
damping of each of thé individual degrees of freedom may be
posltive., This arlses from the existence of phase relation-
ships between the motions in the different degrees of
ireedom which in turn produce situations whereby a motion
in trs siation

= =2s pe - t4Y = L2I:%2 2 2

for exsmple, freds energy into a motion of

bl g
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rotation through the spring constant of the rotation. It 1s
probable thet the dampling of a multiple-degree-of-freedom
system will be affected by the change of density with time
similarly to the single-degree-of-freedom system, This wlll
be true if the phase relationships are not adversely affected
by the change in density with time, Whether they will or
will not be so affected can only be determined by simulta-

neous solution of the differential equatlions with varlable

3 T n L 2 N ~ LR
coefficients describing each of the degrees ol

This solutlion has not been attempted during this investi-

gation but obviously should be carried out.

o d




CHAPTER V
SUMMARY

The differential equation for the motion of an
hypothetical single-degree-of-freedom slrcraft flylng at
high speed on an Inclined path has been solved: exactly for
the case of zero aerodynamic damping; approximately for the
case when aerodynamic damping 1s present,

m am Yk 4o
The solutlo

ns indicate that 1In descending flight a
disturbance results in an oscillation, the frequency and
damping of which increase exponentially with ﬁime. In
ascending flight following a disturbance, the perlod
Increases exponentially with time. The amplitude may at
first decreasse with time but will eventually Increase with
time andvthe vehicle will leave the atmosphere with a
tumbling motion.

The behaviour of the single-degree-of-freedom system
18 probably typlcal of a multiple-degree-of-freedom system
but that this cannot be arvitrarily assumed to be the case
has been indicated and should be the subject of further

3 tudy .
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APPENDIX I

HYPERGEOMETRIC SCLUTION FOR THE
DIFFERENTIAL EQUATION

o + 2e°t3 + Re®te = 0

The exact solution of equation (5) 1s the sum of two
related hypergeometric serles and was found to glve results
in agreement with equation (11), the exact solution with

N O~

ues of t from 40 to 80 seconds using the

a
— . 1
A 8] f.-\r val

values of A, B, and ¢ for the sample problem. In this

- A et
part of the motion the term e 2e 1s negligible so that
the complete solution should agree with the solution
neglecting serodynamic damplng.

The hypergeometric series proved to be useless for
larger values of t ©Dbecause of thelir slow convergence and
because they Involved accurately determining small differ-
ences between very large quantitlies. The hypergeometric
solution is presented here merely for the Information of the

interested reader. The development 1s as follows: In the

equation
o + Ae®td + BeCts = 0 (A-1)

TLet

elt) = wnit)

3
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where
g = eCt
This glves
Let
t = -5t
and
ny(&7) = nle)
a¢, A
nmEN' g T

n"

(&
c ﬂl

Substituting in (A-2)

IVING < A B -
'Z‘(E)*"l"*(l'tl)'aﬂl' feam TP

c

or

B
Eym" + (1 - kdm My = O (A-3)
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This 1is the standard form of the confluent hyper-

geometric equation. A solution for this equation is given

in reference 8, p. 428, as

- B B
6 = CIF(EE’ 1, ll) + CZ[F<K€’ 1, gl) log !1 +

F*(%, lp gl)] (A’h—)
where
B(B \ (B .. ) X
¢ h & = 4+ ] * o "“'+A"&§
F(_@__, 1»§)=1+ZA° Ac ~ ) -\Ac 1
Ac 1 k=1 ()2
and
B B (B _1>§2/
F%(_g_lg>=fc-li_}_:l+AoAc 1/1 _
Ac’ *» %3 (1,>a_§_ 1 (2'2 \B
- Ac y Ac
1 _ 1 1 - _ i\ +
B I l+l 3 * o e o
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